

Mechanism of Action

• BZ receptors on the postsynaptic GABA neuron

• Enhance the inhibitory effect of GABA on neuronal excitability by increasing neuronal membrane permeability to Chloride ions

• More GABA & less GLUTAMATE = more relaxed and less alert

BZ (benzodiazepines)

GABA-A & GABA-B
 BZ receptors are located on GABA-A

 α, GABA-A: saddave and annestic effects; most abundant
 α, GABA-A: anothylic effects
 α, GABA-A: nondrenergic, seratonergic and cholinergic neurons

 Currently available BZ have no specificity for BZ receptor subtypes
 Investigational compounds selective for α₂ and α₃ (potentially anxioselective)
 Selective α₁-GABA-A receptor agonists:
 zolpidem,

Flumazenil (Romazicon)

- GABA-A receptor antagonist
 - Competitively occupies the receptor and blocks/reverses binding of other ligands without affecting GABA mediated chloride conduction Not effective against barbiturates, alcohol or tricyclic antidepressants

 - Half life= 0.7-1.3 hours
- · Adverse effects: agitation, confusion, dizziness, and nausea.
- May cause a severe precipitated abstinence syndrome (withdrawal) in patients who have developed physiologic BZ dependence
- f. co-ingestion of BZ with tricyclic antidepressants, seizures and cardiac arrhythmias may follow flumazenil administration.

Organ level effects of Benzodiazepines

Sedation

- Calming effect with concomitant reduction of anxiety and some depressed effects on psychomotor and cognitive functions (disinhibition)
- Dose dependent anterograde amnesia, or inability to remember events occurring during the drug's duration of action

· Hypnosis

- Effects of BZ on normal sleep:
- Latency of sleep onset is decreased
 Duration of stage 2 NREM is increased
 Duration of REM is decreased
 Duration of stage 4 NREM slow-wave is decreased
- New hypnotics decrease the latency to persistent sleep
 Use for more than 1-2 weeks leads to some tolerance to their effects on sleep patterns

Organ level effects

Some BZ sufficiently selective to exert anticonvulsant effects without warked CNS depression (some psychomotor function might be impaired), but should <u>MOT</u> typically be used long term for this indication

• Ex: clonazepam, lorazepam and diazepam

Muscle Relaxation

- Inhibitory effects on the polysynaptic reflexes and internucial transmission and at high doses may also depress transmission at the skeletal neuromuscular junction only works at <u>HIGH HIGH</u> doses
- · Effects on Respiration Function
 - Some respiratory depression (esp. pts with pulmonary disease, OSA)
 Dose related effects

Pharmacokinetics: Distribution

- BZ are all relatively lipophilic
 - Lipophilicity is important in determining the duration of clinical effect after single dose administration
 - Diazepam and clorazepate have the highest lipid solubility → quickest onsets of action
- · CNS is the central compartment of BZ distribution
- After a single dose, BZ will redistribute rapidly out of the CNS to other lipophilic tissues
- BZ are widely distributed into body tissues, cross the blood-brain-barrier, and highly bound to plasma proteins (70-99%)

Pharmacokinetics: Elimination

- · All BZ are hepatically metabolized and renally excreted
- Oxidation (P450 3A4)
- Glucuronide conjugation
- · Lorazepam, Oxazepam, & Temazepam are conjugated only
- · Clonazepam undergoes nitroreduction

Generic Name	Brand Name	Approximate Equivalent Dosages (mg)	Approved Dosage Range (mg/day)
Alprazolam	Xanax	1	0.75-4; 1.5-10
Chlordiazepoxide	Librium	25	25-100
Clonazepam	Klonopin	0.5	1-4
Clorazepate	Tranxene	15	7.5-60
Flurazepam	Dalmane	30	15-30
Diazepam	<u>Valium</u>	<u>10</u>	2-40
Lorazepam	Ativan	2	0.5-10
Midazolam	Versed	4	N/A
Oxazepam	Serax	30	30-120
Phenobarbital		90	
Temazepam	Restoril	30	15-30
Triazolam	Halcion	0.5	0.125-0.5

More on Receptors

• Benzodiazepine dependence & ETOH dependence

- With long term use of BZ (or/and ethanol) there is a decrease in efficacy of GABA A receptors

• BZ receptors reduced by 30% in the hippocampus and by 25% in the frontal contex

- When high-dose BZ or/and ethanol are abruptly discontinued → "down-regulated" state of inhibitory transmission is unmasked = not enough inhibitory transmission = increased excitatory transmission → LESS GABA AND MORE GLUTAMATE

- characteristic withdrawal symptoms and worsening of underlying anxiety / insomnia symptoms

Physiologic Factors Influencing Benzodiazepine Pharmacokinetics •Lower and less frequent dosing in elderly Aging •Increased elimination half-life •Decreased clearance (oxidative •BZ that undergo metabolism) •Decreased plasma proteins→ increased free fraction glucoronidation preferred in the elderly (lorazepam, Decreased gastric acidity→ icreased BZ absorbtion •Age related changes in oxidative metabolism more pronounced in males •Elderly males require especially low doses •Decreased glucuronidation in women → decreased clearance •Longer half life in women of lorazepam, temazepam •Zolpidem ·Much higher effect

Factor	Dhuisialania and Dhannanahia atia Effect	Clinical
Factor	Phyisiologic and Pharmacokinetic Effect	Significance/Comments
Obesity	Increased BZ elimination half-lives due to increase in Vd	•Increase chance of drug accumulation
Liver Disease	Decreased clearance and increased elimination half-lives of long acting BZs and alprazolam (cirrhosis and hepatitis); Increased elimination half-life of lorazepam in cirrhosis but not acute hepatitis	Avoid long acting BZs or use significantly lower doses
Kidney Disease	Decreased plasma protein bounding→ increased free fraction	•Decreased doses
Ethnicity	Decreased oxidative metabolism (CYP 2C19) of diazepam and alprazolam in Asians	Asians may require lower doses of diazepam, alprazolam and posibly other BZs

Tolerance

- Result of down-regulation of brain BZ receptors
- · Usually develops to the disinhibition, sedation, euphoria and drowsiness seen initially with BZ
 - Problematic when used for insomnia
- · Tolerance to the anxiolytic effect is rare
 - SO PATIENTS WHO CONTINUE TO **ESCALATE DOSE ARE CONCERNING!**

Physical Dependence

- · Becomes apparent when withdrawal occurs upon discontinuation of the drug
- Can occur after continued use beyond 6
- · Reported in 50% of patients on treatment for > 3-6 months

References

- Brunton L, Lazo J, Parker K. Goodman and Gilman's The pharmacological basis of therapaulics. 11º edition. McGraw-Hill Company 2006. DiPiro JT. Tablest IT et al. Pharmacoherapy a pathophysiologic approach.5th edition. McGraw-Hill Medical 2005. Koda Kimble MN, Zung LV, Dradan W et al. Applied Therapeutics: The Clinical Use of Drugs.8th edition. Lippincott Williams 8. Wilkins 2004. Duthle: Practice of Geriatrics, 3rd ev. W.B. Saundera Company 1998.314
 Jacobson: Psychiatric Secrets, 2nd ed. Hanley and Betlus 2001.288.271
 Longo LP, Johnson B. Addiction: Part I: Benzodiazepines side effects, abuse risk and alternatives. Am Fam Physiciae 2000;61:2121-8.

Questions?