The Difficult to Test Population: Hearing Testing Techniques Using Objective and Behavioral Testing

Kevin M. Fire, Ph.D., CCC-A, FAAA
Fire Audiology and Hearing Center
Grand Forks, ND
Associate Professor Emeritus of Audiology
The University of North Dakota

Causes of Hearing Loss

Approximately 50% associated with genetic disorders

- 70% of these have a recessive cause
- 15% have a dominant cause
- 15% have other forms of inheritance

Genetic causes of hearing loss

There are over 400 identified genetic abnormalities that are associated with hearing loss.

The most common non-syndromic cause is due to abnormalities of the connexin-26 gene

Dominant Syndromic Causes of Loss

- Waardenburg Syndrome
- Branchio-Oto-Renal (BOR) Syndrome
- Neurofibromatosis Type II (NFII)
- Stickler Syndrome
- Treacher-Collins Syndrome

Common Recessive Syndromic Causes of Hearing Loss

- Usher Syndrome
- Alport Syndrome
- Jervell and Lange-Nielson Syndrome
- Pendred Syndrome

Other Genetic Causes

- Down Syndrome
- Goldenhar Syndrome
- Angelman Syndrome
- Many many others
Other Risk Factors for Hearing Loss

• Bacterial meningitis/infections
• Head trauma
• Ototoxic medications
• Recurrent otitis media
• Family history

Other Risk Factors for Hearing Loss

• Low birth weight
• TORCH Complex
• Hyperbilirubinemia
• Low APGAR
• Hypoxia

Other Risk Factors for Hearing Loss

• Prolonged ventilation

How We Hear

Human Cochlea (5 months of gestation).
Single Turn Detail

1. Scala Vestibuli
2. Scala Tympani
3. Scala Media
4. Organ of Corti
5. Basilar Membrane
6. Tectorial Membrane
7. Nerve Fibers
8. Stria Vascularis
9. Spiral Ganglion
10. Reissner's Membrane

Organ of Corti

1. Inner Hair Cells
2. Outer Hair Cells
3. Tunnel of Corti
4. Basilar membrane
5. Reticular lamina
6. Tectorial Membrane
7. Deiter’s Cells
8. Nuel’s Space
9. Hensen’s Cells

Hair Cells

- Inner Hair Cells (IHC)
- Outer Hair Cells (OHC)

Electroacoustic Tests

- Immittance
- Otoacoustic Emissions

Immittance

- Ear Canal Volume (ECV or PVT)
- Tympanometry
- Static Compliance
- Acoustic Reflex, Decay, & Latency

Ear Canal Volume

- Measure at +200 mmH20
- Provides measure of volume of external ear canal
- Volumes based on age
- Volumes greater than 2.5 suggest:
 - Perforation or
 - Patent PE tube
Tympanometry

- Often used in conjunction with OAE or acoustic reflex test
- Measures mobility of the eardrum
- Useful for infants and young children

Tympanograms

Tympanometry

- Objective measure of the function of the TM and middle ear
- 5 or 6 basic shapes

Tympanogram Types

Type A Tympanogram

Type AD Tympanogram

A Normal or SN

AD Disarticulation
Type A_s Tympanogram

A_s
Otosclerosis

Type B_{Low} Tympanogram

B_{Low} OME

Type B_{Hi} Tympanogram

B_{Hi} Perforation

Type C Tympanogram

C
Eustachian Tube Dysfunction

Static Compliance

Acceptable range: .2 to 2.5

- Flaccid: disarticulation, flaccid TM, etc.
- Normal mobility
- Stiff: otosclerosis fluid, tympanosclerosis, etc.

Acoustic Reflex Testing

- Measures contraction of the stapedius muscle in the middle ear
- Useful for infants and young children
Otoacoustic Emissions

- David Kemp discovered OAEs.
- Acoustic energy produced by the cochlea and recorded in the external auditory canal.
- Most likely energy produced by outer hair motility and possibly outer hair cell cilia.
- Objective test:
 - DPOAE
 - TEOAE

Otoacoustic Emissions (OAE)

- Measure sound produced by hair cells in the cochlea.
- Ideal for those who remain quiet during the testing.

DPOAE

Distortion-Product OAEs
Distortion-Product OAEs

![Distortion-Product OAEs](image)

Transient Evoked OAEs

![Transient Evoked OAEs](image)

Transient OAEs

![Transient OAEs](image)

What Can Audiology Tell Us?

- **Type of loss**
 - Conductive
 - Sensorineural

What Can Audiology Tell Us?

- **Severity of loss:**
 - Mild: hears conversation; may need amplification
 - Moderate: develops speech and language but requires amplification
 - Severe: requires amplification, auditory management and professional assistance
 - Profound: requires significant support, amplification and, in some cases, cochlear implants
Types of Hearing Loss

- Conductive
 - Middle or outer ear
 - Persistent middle ear infections
 - Fluctuating hearing levels
- Sensorineural
 - Inner ear and beyond
 - Cochlear hair cell dysfunction
 - Filter and distort sound

Conductive vs. Sensorineural

- Conductive
 - Middle ear dysfunction
 - Some treatable with medication
- Sensorineural
 - Pathology in the inner ear, the cochlea, or the 8th cranial nerve
 - No medical treatment
 - Cochlear implant appropriate for some

Electroacoustic Triage Trio

- Tympanogram
- Acoustic Reflex
- Otoacoustic Emissions

Triage Trio

<table>
<thead>
<tr>
<th>Tympanogram</th>
<th>Acoustic Reflexes</th>
<th>OAE</th>
<th>Normal peripheral and lower brainstem function (possible APD) normal hearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Normal or Depressed</td>
<td>OAE Absent or Elevated</td>
<td>Cochlear loss, outer hair cell loss, ABR normal, hearing aids beneficial</td>
</tr>
<tr>
<td>Normal Range</td>
<td>Normal or Depressed</td>
<td>OAE Absent or Elevated</td>
<td>Auditory Neuropathy/Auditory Dys-synchrony</td>
</tr>
<tr>
<td>Absent</td>
<td>Normal or Depressed</td>
<td>OAE Absent</td>
<td>Severe or profound inner ear loss (occasionally otosclerosis)</td>
</tr>
<tr>
<td>Absent</td>
<td>Absent</td>
<td>OAE Absent</td>
<td>Conductive or mixed loss (possible severe/profound loss)</td>
</tr>
</tbody>
</table>

Evoked Potentials

- EcochG
- ABR
- Middle Latency
- Late Response

Happy baby all wired up for ABR test
ABR Wave

I Auditory Nerve
II Auditory Nerve
III Cochlear Nuclei
IV SOC
V ???

Behavioral Techniques

- BOA
- VRA
- COR
- Speech testing compared to pure tones
- CPA