Renal Artery Disease

Robert D. McBane, M.D. Division of Cardiology Mayo Clinic Rochester Financial Disclosure Information Renal Artery Disease Robert McBane, MD

None

Learning objectives: Renal Artery Disease

To appreciate:

- 1. Which patients with hypertension require screening for renal artery stenosis
- 2. Which patients with renal artery stenosis require an intervention
- 3. Proper evaluation and management of renal fibromuscular disease.

Renal Artery Disease

SCREENING

54 y/o male

He has a 10 year history of hypertension. He is a non-smoker. He takes chlorthalidone 25 mg/day (like his father). Renal function is normal.

Exam: BP 160/90 Pulse 80 regular Cor: normal JVP, PMI. No M/R/C/G Abdomen: No HSM or bruits

What would you recommend for this patient?

- 1. Renal Duplex ultrasound
- 2. CTA renal arteries
- 3. MRA renal arteries
- 4. Plasma renin activity
- 5. Augment chlorthalidone

"Primary" Hypertension

90-95% of all hypertension

- Family history
- African American
- Excess Na+ intake
- · Excess alcohol intake
- Obesity
- Inactivity

Who should be evaluated for secondary causes?

- Severe or resistant hypertension
- Acute onset
- Onset before *puberty*
- Onset ≤ 30 yrs old, *no family history* or obesity
- Search for *clinical clues*

Renovascular Hypertension

Clues:

- Diffuse atherosclerosis
- 50% rise in creatinine with ACE-I or ARB
- Renal atrophy (>1.5 cm)
- Flash pulmonary edema
- Severe htn onset > 55 yrs
- Abdominal bruit

Renovascular Hypertension:

Prevalence

 By hyperten 	sion s	everity
Mild – mod:		<1%
Severe:		30 – 45%
Coexisting c	ardiov	vascular disease
CAD	20%	
PAD	50%	
CHF	50%	
ESRD	50%	Am J Hypertens 2010;23:1159 J Vasc Surg 2002;36:443 J Hypertens 2009;27:1333

Limit testing to those *likely to benefit* from *an intervention*

- Short duration of hypertension
- Failure of optimal treatment
- Medication intolerant
- Progressive CKD
- FMD (particularly young female)
- · Recurrent flash pulmonary edema

54 y/o male

He has a 10 year history of hypertension. He is a non-smoker. He takes chlorthalidone 25 mg/day (like his father). Renal function is normal.

Exam: BP 160/90 Pulse 80 regular Cor: normal JVP, PMI. No M/R/C/G Abdomen: No HSM or bruits

What would you recommend for this patient?

- 1. Renal Duplex ultrasound
- 2. CTA renal arteries
- 3. MRA renal arteries
- 4. Plasma renin activity
- 5. Augment chlorthalidone

Duplex Utrasound

Advantages

- · Widely available
- · No contrast or radiation
- Trials: > 90% sens/spec

Limitations

- · Obesity
- · Technically difficult
- Time intensive (~ 2 hours)
- Real world: 60% sens/spec 20% technically inadequate

Renal US: Resistive Index

- · Measure of parenchymal fibrosis
- · Segmental arteries

- RI = (PSV-EDV)/PSV • Values > 80
- · Intrinsic kidney disease
- · Poor outcomes from interventions

CT Angiography **Advantages**

- Widely available
- · Beautiful pictures
- Trials: > 90% sens/spec

Limitations

- · No intervention possible
- · Radiation exposure
- · Contrast nephropathy

MR Angiography

Advantages

- · Widely available
- · Beautiful pictures
- · No radiation
- Trials: > 90% sens/spec

Limitations

- No intervention possible
- · Nephrogenic systemic fibrosis

· Only if a corrective procedure will be pursued if disease detected

54 y/o male

He has a 5 year history of hypertension. He uses moderate daily alcohol. Sedentary. He takes chlorthalidone 50 mg, amlodipine 2.5 mg, metoprolol 50 mg/BID (like his father).

Exam: Wt 120 kg Ht 170 cm BP 160/90 Pulse 50 regular Cor: normal JVP. S4 at apex Abdomen: bruit on left

Creatinine is 1.5.

When counselling this patient, which of the following statements is true regarding PTRA/stenting of his left renal artery?

- 1. Renal artery stenosis is the most likely cause of his hypertension
- 2. PTRA/stenting is likely to improve his BP
- 3. PTRA/stenting is likely to preserve renal function
- 4. Renal artery stenosis is an independent predictor of MI and CV mortality
- PTRA/stenting is likely to improve CV outcomes

When counselling this patient, which of the following statements is true regarding PTRA/stenting of his left renal artery?

- 1. Renal artery stenosis is the most likely cause of his hypertension
- 2. PTRA/stenting is likely to improve his BP
- 3. PTRA/stenting is likely to preserve renal function
- 4. Renal artery stenosis is an independent predictor of MI and CV mortality
- PTRA/stenting is likely to improve CV outcomes

Resistant Hypertension

- Definition
 - Not controlled by \geq 3 BP meds
- Associations
 - Obesity
 - · Increasing age
 - Poor compliance (meds or diet)
 - "Secondary" hypertension
 - · "White coat" hypertension

Resistant Hypertension Causes

- Excess salt
- Medication
 - Inadequate doses
 - Inadequate diuretic
 - Drugs (e.g., NSAIDs, illicit drugs, sympathomimetics, OCPs)
- · Excess alcohol intake

Obstructive Sleep Apnea

Clues:

- Nocturnal choking/gasping
- Daytime somnolence
- Inappropriate sleep

Screen:

- · Overnight oximetry
- Polysomnography

54 y/o male

He has a 5 year history of hypertension. He uses *moderate daily alcohol. Sedentary.* He takes chlorthalidone *50 mg*, amlodipine *2.5 mg*, metoprolol 50 mg/BID (*like his father*).

Exam: Wt 120 kg Ht 170 cm BP 160/90 Pulse 50 regular Cor: normal JVP. S4 at apex Abdomen: bruit on left

Creatinine is 1.5.

Renovascular Hypertension

- Most common potentially correctable cause
 - <1% of mild hypertension
 - 10-40% of patients with severe hypertension
- Strong *mortality* predictor
 16%/year
- 2-4x elevated risk of MI

Renovascular Hypertension

Progression to ESRD, "Ischemic nephropathy"

- Rare with FMD
- · Rare with unilateral disease
- More likely if bilateral or solitary kidney
- · Difficult to predict which patients will progress

Trial	Ν	No Difference
ASTRAL	806	Renal preservation Blood pressure Renal events CV events Overall survival
CORAL	947	MACE or Renal events Medication requirements Overall survival
STAR	140	Renal preservation Blood pressure Overall survival

Renal artery stenosis

- Know the *clinical clues* to its presence
- Recognize the association with *ischemic* cardiovascular disease
- Recognize that patients may have *incidental* RAS (< 70% stenosis) which may not be the cause of hypertension
- Only if the clinical scenario is compelling (severe stenosis, severe resistant HTN, recurrent flash pulmonary edema, declining GFR/atrophy), then stenting may be indicated.

When considering Treatment Renovascular Hypertension

- · Antihypertensive drugs are effective
- Correcting the stenosis may not improve outcomes
- · No tools to predict who will benefit
- Don't forget to treat other risk factors – Tobacco
 - Lipids
 - DM

30 y/o female

Notes intermittent forceful palpitations for 2 months. She is an RN. Recent serial BPs: 168/96 & 186/102. Five months ago, her GYN evaluation included a normal BP assessment. She is very active. No tobacco, minimal alcohol. Otherwise healthy.

Exam: Wt 52 kg Ht 162 cm

BP 138/102 Pulse 70 regular Cor: normal JVP. Subtle S4 at apex Abdomen: bruit subxyphoid

Creatinine is 1.1. GFR 56

Renal Angiogram: FMD

When counselling this patient, which of the following would you recommend?

- 1. Balloon angioplasty
- 2. Balloon angioplasty with bare metal stent
- 3. Balloon angioplasty with drug eluding stent
- 4. Renal artery Bypass
- 5. Treat medically: ARB or ACE I.

PTA right renal artery

Hypertension: "Cured"

- Bilateral perimedial fibroplasia
- Pre PTA 180/110
- Post PTA 122/78

Drugs to **Avoid** During Pregnancy

- ACE I, ARB
 - Renal (late trimester)
 Cardiac (early trimester)
- Diuretics
- Nitroprusside
 Fetal cyanide poisoning

When counselling this patient, which of the following would you recommend?

- 1. Balloon angioplasty
- 2. Balloon angioplasty with bare metal stent
- 3. Balloon angioplasty with drug eluding stent
- 4. Renal artery Bypass
- 5. Treat medically: ARB or ACE I.

What is your Diagnosis?

- 1. Atherosclerosis
- 2. Variant FMD
- 3. Vasculitis
- 4. Neurofibromatosis
- 5. Vasospasm : Ergotamine/Cocaine

What is your Diagnosis?

- 1. Atherosclerosis
- 2. Variant FMD
- 3. Vasculitis
- 4. Neurofibromatosis
- 5. Vasospasm : Ergotamine/Cocaine

Mayo Clin Proc 1971;46:161

US FMD Registry • 9 Centers • 447 patients 47 ± 15 years Age @ first symptom Age @ diagnosis 52 ± 13 years 91% Females Race Caucasian 95% Black 2% Hispanic 2% Circulation 2012;125:3182

Distribution of Vascular Involvement			
Renal artery	80%		
 Extracranial Carotid 	74%		
 Intracranial carotid 	17%		
 Intracranial aneurysm 	8%		
 Vertebral 	37%		
 Mesenteric 	26%		
 Lower extremity 	60%		
Upper extremity	16%		
*Multivessel involvement 35% **Medial fibroplasia 91%	Circulation 2012;125:3182		

Dissections		
Overall	88 (19.7%)	
Carotid	68	
Renal	19	
 Vertebral 	15	
Mesenteric	4	
Coronary	3	
Celiac	2	
• Iliac	2	
Dissection of > 1 vessel 19%	Circulation 2012;125:3182	

9

Aneurysms			
Overall	76 (17%)		
 Renal 	25		
Carotid	16		
Aorta	15		
Celiac	12		
 Intracerebral 	9		
 Mesenteric 	5		
 Vertebrobasilar 	7		
• SCA	2		
 Popliteal 	2		
> 1 vessel 17%	Circulation 2012;125:3182		

Left subclavian artery occluded

> Aneurysmal and stenotic arterial disease

Right renal artery stenosis

- Renal

Renal Artery Occlusive Disease: Potential Causes

- Atherosclerosis
- FMD
- Aneurysm
- AV fistula
- Trauma
- Coarctation
- Vasculitis
- Embolism

Renal Artery Stenosis: Summary

- Hypertension is common
- Antihypertensive drugs are effective
- Secondary causes require searching for clinical clues
- Assessment includes a careful pre-test probability of disease evaluation
- Selecting patients for renal artery interventions should be done carefully